((x^3-1)/(x^2-4))*((2x-4)/(x^2-2x+1))

Simple and best practice solution for ((x^3-1)/(x^2-4))*((2x-4)/(x^2-2x+1)) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for ((x^3-1)/(x^2-4))*((2x-4)/(x^2-2x+1)) equation:


D( x )

x^2-4 = 0

x^2-(2*x)+1 = 0

x^2-4 = 0

x^2-4 = 0

1*x^2 = 4 // : 1

x^2 = 4

x^2 = 4 // ^ 1/2

abs(x) = 2

x = 2 or x = -2

x^2-(2*x)+1 = 0

x^2-(2*x)+1 = 0

x^2-2*x+1 = 0

x^2-2*x+1 = 0

DELTA = (-2)^2-(1*1*4)

DELTA = 0

x = 2/(1*2)

x = 1 or x = 1

x in (-oo:-2) U (-2:1) U (1:2) U (2:+oo)

((x^3-1)/(x^2-4))*((2*x-4)/(x^2-(2*x)+1)) = 0

((x^3-1)/(x^2-4))*((2*x-4)/(x^2-2*x+1)) = 0

((x^3-1)*(2*x-4))/((x^2-4)*(x^2-2*x+1)) = 0

x^2-2*x+1 = 0

x^2-2*x+1 = 0

DELTA = (-2)^2-(1*1*4)

DELTA = 0

x = 2/(1*2)

x = 1 or x = 1

(x-1)^2 = 0

((x^3-1)*(2*x-4))/((x^2-4)*(x-1)^2) = 0

( 2*x-4 )

2*x-4 = 0 // + 4

2*x = 4 // : 2

x = 4/2

x = 2

( x^3-1 )

1*x^3 = 1 // : 1

x^3 = 1

x^3 = 1 // ^ 1/3

x = 1

x in { 2}

x in { 1}

x belongs to the empty set

See similar equations:

| 3x^2=5+14x | | 17m=8m-45 | | -4x+10=-9x-5 | | 13(t-6)+5t=6(3x+5)-13 | | -1/2x+4 | | 3a+10=16 | | 6(3a+3)=36 | | (-5x)^3/-5x^3 | | 2k+29-8k=5 | | 5=(1/6)*x | | 2k=29-8k | | 4x=5y-8 | | 6(k-4)=4-2k | | 6p-1=4p-5 | | 2(10-n/13)=12 | | ((2x)/(5))=((12)/(10)) | | 2x+5=8x-58 | | 0=-9x^2+8x+9 | | 2x-2x^2=0.24 | | (5x^2/14x-3)/(x^2-9) | | 20(c+3)-4=54 | | 2b+8=8 | | 3a+9=21 | | 1/2(30-n)=4 | | 2x+13=-20-7x | | 2-3f-5+5f= | | ax+b=3 | | 2y+9=21 | | 180*11/36*6/25 | | 0.3x^2-x+30=0 | | 0.3x^2-x+300=0 | | 3(r-4)=2(r-2)+2-r |

Equations solver categories